

A.02

Grilles for galva ducts

SDN-V GALVA

Grilles for rectangular ducts Galvanized steel Galvanized natural finish Vertical blades

Single deflection grilles for rectangular duct type SDN-V ĞALVA

Single deflection grille for rectangular duct mounting with adjustable blades made of galvanized steel

Brand

Cairox

Application

• For air supply and exhaust in ventilation and air conditioning systems.

Material

Galvanized steel

Colour

- Galvanized steel
- Other colours available upon request

Composition

Single row of vertical deflection blades

Mounting

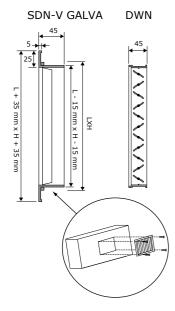
Visible screw mounting on rectangular duct

Accessories

Volume control damper DWN

Text for tender

- The grilles for air supply or exhaust have individually adjustable blades to regulate the direction of the air flow pattern. They are made of galvanized steel natural finish with a single deflection and are supplied with a volume control
- Cairox Type SDN-V GALVA+DWN



Grilles for galva ducts

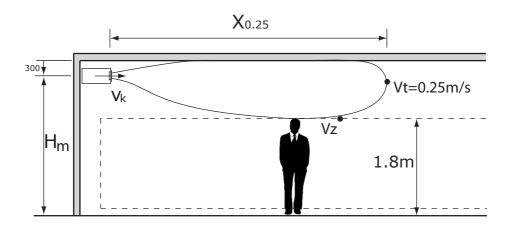
Order example

SDN-V GALVA, 400, 100 + DWN Explanation
SDN-V GALVA = Grille type
400 = Length
100 = Height

Accessories (Optional) **DWN** = Volume control damper

Quick selection														
SDN-V	LxH	200x100	300x100	400x100	300x150	500x100	400x150 600x100	500x150	800x100 400x200	600x150	1000x100 500x200	800x150 600x200	1000x150 800x200	1000x200
Q	Ak	0.0111	0.018	0.025	0.0285	0.032	0.0389	0.0494	0.0529	0.0598	0.0668	0.0807	0.1016	0.1365
	Vk	2.5	1.5	1.1										
100	X0,25	2.8	2.2	1.8										
	Ps	2.7	1	0.5										
	Lw(A)	<20	<20	<20	4.5	- 10		1						
	Vk	3.8	2.3	1.7	1.5	1.3	1.1							
150	X0,25 Ps	4.2 6.1	3.3 2.3	2.8 1.2	2.6 0.9	2.5 0.7	2.2 0.5							
	Lw(A)	25	<20	<20	<20	<20	<20							
	Vk	5	3.1	2.2	1.9	1.7	1.4	1.1	1.1	1				
	X0,25	5.6	4.4	3.7	3.5	3.3	3	2.6	2.5					
200	Ps Ps	10.9	4.1	2.2	1.7	1.3	0.9	0.6	0.5					
	Lw(A)	33	23	<20	<20	<20	<20	<20	<20					
	Vk	7.5	4.6	3.3	2.9	2.6	2.1	1.7	1.6	1.4	1.2	1		
	X0,25	8.3	6.5	5.5	5.2	4.9	4.4	3.9	3.8	3.6	3.4	3.1		
300	Ps	24.6	9.4	4.9	3.7	3	2	1.2	1.1	0.8	0.7	0.5		
	Lw(A)	44	33	26	23	21	<20	<20	<20	<20	<20	<20		
	Vk		6.2	4.4	3.9	3.5	2.9	2.2	2.1	1.9	1.7	1.4	1.1	
400	X0,25		8.7	7.4	6.9	6.5	5.9	5.3	5.1	4.8	4.5	4.1	3.7	
400	Ps		16.7	8.6	6.6	5.3	3.6	2.2	1.9	1.5	1.2	0.8	0.5	
	Lw(A)		41	34	31	29	24	<20	<20	<20	<20	<20	<20	
	Vk			6.7	5.8	5.2	4.3	3.4	3.2	2.8	2.5	2.1	1.6	1.2
600	X0,25			11.1	10.4	9.8	8.9	7.9	7.6	7.2	6.8	6.2	5.5	4.7
333	Ps			19.5	15	11.9	8	5	4.4	3.4	2.7	1.9	1.2	0.7
	Lw(A)			45	42	39	35	30	28	26	23	<20	<20	<20
	Vk				7.8	6.9	5.7	4.5	4.2	3.7	3.3	2.8	2.2	1.6
800	X0,25				13.9	13.1	11.9	10.5	10.2	9.6	9.1	8.2	7.3	6.3
	Ps				26.7 50	21.2 47	14.3 43	8.9 38	7.7 36	6.1 33	4.9 31	3.3 27	2.1	1.2
	Lw(A) Vk				50	4/	7.1	5.6	5.3	4.6	4.2	3.4	22 2.7	<20 2
	X0,25						14.8	13.2	12.7	12	11.3	10.3	9.2	7.9
1000	Ps Ps						22.4	13.9	12.7	9.5	7.6	5.2	3.3	1.8
	Lw(A)						49	44	42	39	37	33	28	21
	Vk						1,5	6.7	6.3	5.6	5	4.1	3.3	2.4
4000	X0,25							15.8	15.3	14.4	13.6	12.4	11	9.5
1200	Ps							20.1	17.5	13.7	11	7.5	4.7	2.6
	Lw(A)							48	47	44	42	38	33	26
	Vk									7.4	6.7	5.5	4.4	3.3
1600	X0,25									19.1	18.1	16.5	14.7	12.7
1000	Ps									24.4	19.5	13.4	8.4	4.7
	Lw(A)									52	50	45	40	34
	Vk											6.9	5.5	4.1
2000	X0,25											20.6	18.4	15.8
	Ps											20.9	13.2	7.3
	Lw(A)											51	46	40
	Vk												6.6	4.9
2400	X0,25												22	19
	Ps												19	10.5
	Lw(A)												51	45

Grilles for galva ducts


Symbols and specifications

- LxH = Width L and height H in mm
- Q = Air volume in m³/h Ak = Effective surface (free area) in m²
- Vk = Average effective velocity through the grill in m/s
- X0.25 = Horizontal throw in m at an endvelocity Vt of 0.25 m/s
- Ps = Static pressure loss given in Pa
- Lw(A) = Acoustic power in dB(A)
- The throw X0.25 is given without deflection of the airstream at an end velocity of 0.25m/s. The distances are given for a smooth ceiling and installation distance of the center of the grille at 300mm from the ceiling surface. When mounted at a distance of 400 to 600 mm from the ceiling, a horizontal deflection towards the ceiling of 15° is advised. When mounted at a distance larger than 600mm from the ceiling, the throw distance X0.25 will be smaller than mentioned due to the missing coanda effect. In these cases and for all other special requirements, please
- contact our engineering office.

 The values are given for isothermal supply air. Throw distances for cooling conditions at -11K can be calculated by dividing the X0.25 values with factor 1.1. For heating purposes at Dt of +11K a multiplier of 1.1 should be applied to the given X0.25 value.
- Advised mounting distance between centers of multiple grilles in the same wall should be greater than 1/3 of the throw length X0.25 (without spread)
- The pressure losses Ps are given for grilles without damper of with fully opened damper.

 The acoustic powers Lw(A) are given for grilles without damper of with fully opened damper without room attenuation. Acoustic powers below 20dB(A) are mentioned as "<20" in the tables.

Placement instruction

