

A.04

Ceiling diffusers and grilles

PPTMB (RAL9016)

- Perforated diffusers
- _ Square
- _ Steel
- White, RAL 9016

Perforated ceiling diffusers for air supply type PPTMB (RAL9016)

Air supply ceiling diffusers with adjustable 1- to 4-way pattern perforated plate.

Brand

Cairox

Application

• For air supply in ventilation and air conditioning systems

Material

Steel

Colour

- Standard colour white, RAL 9016
- Other colours available upon request

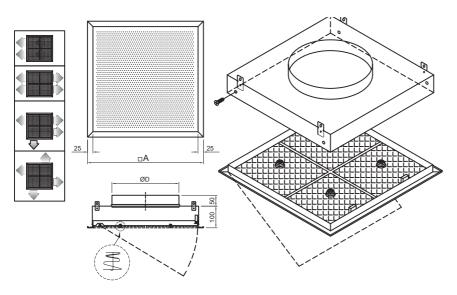
Composition

- Perforated removable front plate with incorporated top entry plenum box
- Perforated innerpart to be opened easily by push-push system

Text for tender

- The square air supply ceiling diffusers are of the multidirectional type with a perforated front plate and an incorporated plenum box. They are made of steel in white powdercoating finish RAL 9016.
- Cairox type PPTMB

Order example


• PPTMB, 200 Explanation

PPTMB = Diffuser type

200 = Diffuser size (connection diameter)

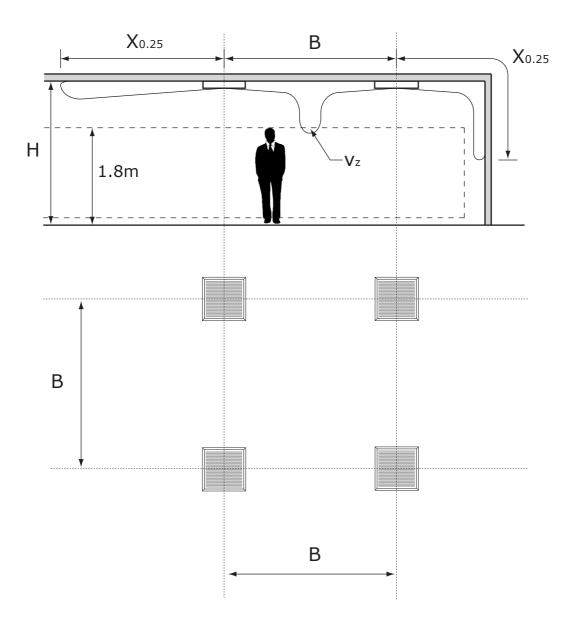
Ceiling diffusers and grilles

Dimensions									
PPTMB	A [mm]	ØN [mm]							
160	300	160							
200	400	200							
250	500	250							

Quick selection												
PPTMB				300/160		400/200			500/250			
	Ak			0.0302			0.0591		0.0976			
Q		В		1.2	2.4	3.6	1.2	2.4	3.6	1.2	2.4	3.6
150		H=	2.7	0.97	0.32	0.19	0.69	0.23	0.14			
		H=	3.2	0.36	0.21	0.15	0.26	0.15	0.1			
		H=	3.8	0.21	0.15	0.11	0.15	0.1	0.08			
	Vk			1.4			0.7					
	X0.25			2.4			2					
	Ps			8		2						
	Lw(A)			25		<20						
		H=	2.7	1.29	0.43	0.26	0.92	0.31	0.18	0.73	0.24	0.15
		H=	3.2	0.49	0.28	0.19	0.35	0.2	0.14	0.27	0.16	0.11
		H=	3.8	0.28	0.19	0.15	0.2	0.14	0.11	0.16	0.11	0.08
200	Vk			1.8			0.9		0.6			
	X0.25				2.8 2.3			2.1				
	Ps			13		3		1				
		Lw(A)	-		34			<20			<20	
		H=	2.7	1.62	0.54	0.32	1.15	0.38	0.23	0.91	0.3	0.18
		H=	3.2	0.61	0.35	0.24	0.43	0.25	0.17	0.34	0.2	0.14
		H=	3.8	0.35	0.24	0.19	0.25	0.17	0.13	0.2	0.14	0.11
250	Vk				2.3			1.2		0.7		
	X0.25			3.1			2.6		2.3			
	Ps				22 42		6			2		
		Lw(A)	2.7		42		1.38	22 0.46	0.20	4.00	<20	0.22
300	Vz	H= H=	3.2				0.52	0.46	0.28	1.09 0.41	0.36 0.23	0.22
	VZ	H= H=	3.2 3.8				0.52	0.3	0.16	0.41	0.23	0.16
		Vk	3.6				0.5	1.4	0.16	0.23	0.16	0.15
	X0.25						2.9			2.5		
	Ps						8			3		
		Lw(A)						28			<20	
400		H=	2.7				1.85	0.62	0.37	1.46	0.49	0.29
	Vz	H=	3.2				0.69	0.4	0.28	0.55	0.31	0.22
		H=	3.8				0.4	0.28	0.21	0.31	0.22	0.17
		Vk						1.9			1.1	
	X0.25						3.4			3		
	Ps						15			5		
	Lw(A)						38			23		
600		H=	2.7							2.19	0.73	0.44
		H=	3.2							0.82	0.47	0.33
		H=	3.8							0.47	0.33	0.25
		Vk									1.7	
	X0.25									3.8		
	Ps									12		
		Lw(A)									36	
800		H=	2.7							2.92	0.97	0.58
		H=	3.2							1.09	0.63	0.44
		H=	3.8							0.63	0.44	0.34
		Vk							2.3			
		X0.25							4.7			
		Ps					22					
	Lw(A)									46		

Symbols and specifications

- Q = Air Volume in m³/h
 Ak = Effective surface (free area) in m²
 B = Distance between diffusers in m
 H = Installation height of the diffusers in m
- Vz = Maximum velocity at the occupied zone regarding distance between diffusers and installation height in m/s


Ceiling diffusers and grilles

- Vk = Average effective velocity through the grill in m/s
- X0.25 = Throw length in m at an endvelocity Vt of 0,25m/s
- Ps = Static pressure loss given in Pa
- Lw(A) = Acoustic power in dB(A)
- The throw X0.25 is given at an end velocity of 0.25m/s for a smooth ceiling without any obstacles. The table values are given for the adjustable deflection plates set at its standard position to achieve an air flow pattern
- The values are given for isothermal supply air. Throw distances for cooling conditions at -11K can be calculated by deviding the X0.25 values with factor 1.1. For heating purposes at Dt of +11K a multiplier of 1.1 should be applied to the given X0.25 value.
- In order to achieve a high comfort level, selections can be made according to the maximal velocity at the occupied zone Vz. These values are given at distances between diffusers B and installation heights H. Velocities Vz lower than, or equal to 0,25m/s at the occupied zone are advised.
- The pressure losses Ps are given for grilles without damper of with fully opened damper.

 The acoustic power Lw(A) are given for grilles without damper of with fully opened damper without room attenuation.

 Acoustic powers below 20dB(A) are mentioned as "<20" in the tables.
- For all special requirements, please contact our engineering office.

Placement instruction

