

A.04

Ceiling diffusers and grilles

JET-A (ALU)

- JET nozzles Circular Aluminium
- Aluminium natural finish

Aluminium JET nozzles type JET-A (ALU)

Manually adjustable IET nozzles

Brand

Cairox

Application

- JET nozzles are used for hot or cold air supply in ventilation and air conditioning systems where a long throw, high induction and low sound levels are required. The nozzles are manually adjustable to be set for cooling or heating purposes

Material

Coated Aluminium

Colour

- Natural aluminium finish
- Other colours available upon request

Composition

■ The nozzle can be adjusted manually to direct the air flow over 30° in all directions.

Text for tender

- The air supply diffusers are of the JET type for long throw application. They are made in natural aluminium with coating in natural finish.
- Cairox type JET-A

Order example

■ JET-A, 300 (150)

Explanation

JET = Diffuser type

300 = Connection diameter

150 = Nozzle size

Ceiling diffusers and grilles

	Dimensions											
JET-A	ØA[mm]	ØB[mm]	ØC[mm]	ØD[mm]	ØE[mm]	L1[mm]	L2[mm]	L3[mm]	L4[mm]			
160	158	80	249	166	206	66.5	50	15	110			
200	198	110	289	206	246	66.5	50	15	111			
300	298	150	389	306	346	66.5	50	15	110			
400	200	220	400	406	116	CC E	EO	1 =	111			

			Quick selection		
	JET-A	160/80	200/110	300/150	400/230
Q	Ak	0.0059	0.0101	0.0183	0.0432
~	Vk	4.7	0.0101	0.0105	0.0432
	X0,25	8.9			
100	Ps	12			
	Lw(A)	20			
	۷k	7.1	4.1		
	X0,25	13.4	10.1		
150	Ps	30	9		
	Lw(A)	30	<20		
	Vk	9.4	5.5	3	1
	X0,25	17.6	13.6	10	
200	Ps	54	17	10 5	
	Lw(A)	37	24	<20	
	Vk		8.3	4.6	
	X0,25		20.4	15.3	
300	Ps		41	12	
	Lw(A)		34	<20	
	Vk		11	6.1	
	X0,25		27	20.2	
400	Ps		75	22	
	Lw(A)		40	26	
	Vk		10	7.6	3.2
	X0,25			25.2	16.4
500	Ps			34	6
	Lw(A)			32	<20
	Vk			9.1	3.9
	X0,25			30.1	20
600	Ps			50	8
	Lw(A)			36	<20
	Vk				5.1
222	X0,25				26
800	Ps				15
	Lw(A)				22
	Vk				7.7
1200	X0,25				39.2
1200	Ps				35
	Lw(A)				32
	Vk				9
1400	X0,25				45.7
1400	Ps				49
	Lw(A)				36
	Vk				11.6
1800	X0,25				58.8
1800	Ps				84
	Lw(A)				41

Symbols and specifications

- Q = Air volume in m³/h
- Ak = Effective surface (free area) in m²
- Vk = Average effective velocity through the grill in m/s
- X0.25 = Horizontal throw in m at an endvelocity Vt of 0.25 m/s
- Ps = Static pressure loss given in Pa
- Lw(A) = Acoustic power in dB(A)
- The throw X0.25 is given without deflection of the airstream at an end velocity of 0.25m/s. The distances are given without coanda effect.
- The values are given for isothermal supply air. Throw distances for cooling conditions at -11K can be calculated by deviding the X0.25 values with factor 1.1. For heating purposes at Dt of +11K a multiplier of 1.1 should be applied to the given X0.25 value.
- The acoustic power Lw(A) are given for grilles without room attenuation. Acoustic powers below 20dB(A) are mentioned as "<20" in the tables.

Ceiling diffusers and grilles

• For special requirements, please contact our engineering office.

Placement instruction

