

EVA (RAL9016)

- Air valves
- Steel
- White, RAL 9016
 - Extraction

Steel exhaust valves type EVA (RAL9016)

Air extraction valves with adjustable core

Brand

Cairox

Application

- For air extraction in ventilation systems
- Suitable for small spaces such as toilets, storage room, bathroom, etc.

Material

Steel

Colour

Standard colour white, RAL 9016

Composition

 Pressed steel body with adjustable core, supplied with galvanized steel mounting frame

Mounting

- Fixing by clips in the mounting frame
- Can also be used for direct mounting into round duct (with or without mountingframe)

Accessories

■ Mounting ring **TR** for clamping the mounting frame on tile ceiling plates

Order example

EVA, 125

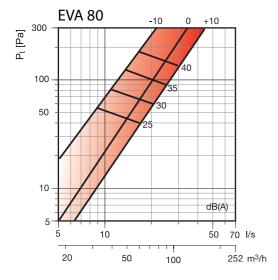
Explanation

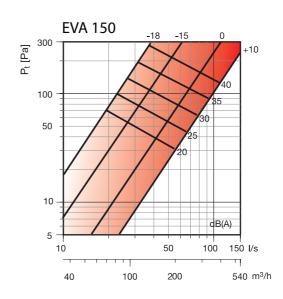
EVA = Type valve (incl. mountingframe)

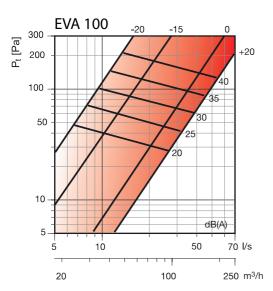
125 = Connection diameter

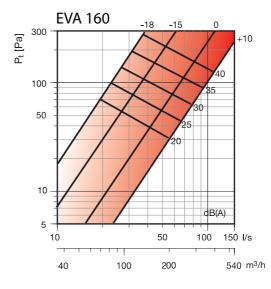
Text for tender

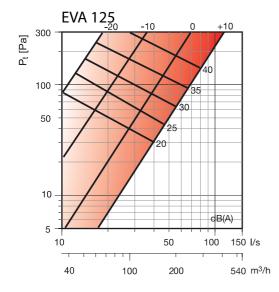
- The air extraction valves shall be of the high pressure loss type with adjustable core and made of steel. They shall be supplied with mounting frame White finish RAL 9016
- Cairox type EVA

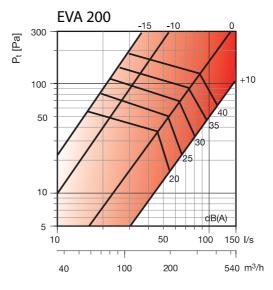

Quick selection																
	EVA	80		100			125			150/160			200			
Q	r	-10	0	+10	-20	0	+20	-20	0	+10	-15	0	+10	-10	0	+10
25	Ps	30	10	6	60	<10		50								
	Lw(A)	21	9	<10	26	<10		<10								
50	Ps		40	25		15		175	10							
	Lw(A)		29	21		14		33	<10							
75	Ps			60		35	18		25	8	30	9				
,,,	Lw(A)			34		26	18		16	<5	17	<10				
100	Ps					62	30		40	15	55	17				
100	Lw(A)					28	25		24	10	24	11			_	
125	Ps					100	50		60	20		25	11	80		
123	Lw(A)					39	31		29	15		19	9	31		
150	Ps						100		100	30		40	15	130		
130	Lw(A)						41		37	20		24	14	39		
200	Ps									60		70	30		50	
	Lw(A)									30		31	24		29	
250	Ps												40		70	20
	Lw(A)												29		34	29
300	Ps												70		100	30
	Lw(A)												34		41	34
400	Ps															60
	Lw(A)															44

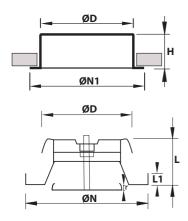

Symbols and specifications


- Q = Air volume in m³/h
 Ps = Static pressure loss in Pa
 Lw(A) = Acoustic power in dB(A), based upon measured Lp acoustic pressures increased by 4 dB(A) room attenuation
 r = -20 mm, 0, +20 mm = Distance between the face of the central cone and the valve border




Selection Graph





Symbols

- Qv = Air volume in m³/h and l/s
 Pt = Total pressure loss in Pa
 Lp = Acoustic pressure in dB(A
 r = Gap between the central core and the valve body

Dimensions										
	ØD [mm]	ØN [mm]	ØN1 [mm]	H [mm]	L [mm]	L1 [mm]				
EVA 80	80	106	96	50	60	15				
EVA 100	100	135	125	50	60	15				
EVA 125	125	160	150	50	60	15				
EVA 150	150	191	181	50	60	15				
EVA 160	160	195	185	50	60	15				
EVA 200	200	238	228	50	63	15				