

Constant volume control dampers (CAV)

VRS-LP-M

Circular Galvanized steel Motorized 24V or 230V

Motorized Constant air volume control dampers type VRS-LP-M

Motorized CAV controllers for flow control at 2 constant air flows. The minimum and maximum flow can easily be set. To be used for controlling the airflow at a pressure between 40 and 500 Pa.

Application

- For flow control in ventilation and air conditioning systems at 2 set flow rates (Vmin-Vmax) with the following duct sizes and air volumes ■ Ø80: adjustable between 25 & 80 m³/h

 - Ø100: adjustable between 40 & 125 m³/h
 Ø125: adjustable between 65 & 220 m³/h

 - Ø160: adjustable between 100 & 350 m³/h
 Ø200: adjustable between 160 & 500 m³/h
- Ø250: adjustable between 240 & 800 m³/h Accuracy: +/- 10% of the set air volume

Material

- Galvanized steel housing
- Aluminium regulation blade with piston and spring
- Mechanism for positioning with scale for setting the minimum and maximum air flow

Composition

- Round housing made out of laser welded galvanised steel in standard duct sizes according to DIN EN 12237
- Airtight connection up to class D with EPDM rubber according to DIN EN 12237
 Balanced self-regulating aluminium blade with PTFE bearing and piston to
- prevent oscillations Servomotor 24V or 230V for Vmin Vmax flow setting with mechanical end stops.

Technical data

- Nominal voltage: AC / DC 24 V or AC 230 V
 Nominal frequency: 50/60 Hz
 Power consumption Ø80 Ø250
- - In operation: 1.5 W @ nominal torque CM230-L / 0.5 W @ rated torque CM24-
 - At rest: 1 W CM230-L / 0.2 W CM24-L

Constant volume control dampers

For measuring wires: 3 VA CM230-L / 1 VA CM24-L
 Cable 1m, 3 x 0.75 mm²

Direction of rotation: depending on circuit CW or CCW

Angle of rotation: limited on both sides by adjustable, mechanical end stops. The actuator is protected against overload, requires no limit switches and stops automatically when the end stop is reached Torque CM-L: 2 Nm Rotation time CM-L: 75 s / 90°

Noise level: max. 35 dB (A)

Designation position: mechanical, pluggable

Integrated magnet for manual operation (magnetic gear release) Protection level: IP54 in every mounting position

Ambient temperature range of servomotor during operation: -30 ... 50 ° C

Mounting

• Set minimum and maximum flow rates by setting the mechanical end stops of the servomotor according to the scale

To be inserted at both sides into a round duct and to be equipped with a silencer if necessary

Horizontal or vertical mounting

Accessories

Insulation shells available upon request

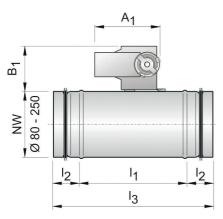
Text for tender

- The regulation of the airflow of the duct network is done by means of motorized valves for constant air volume control for Vmin - Vmax switching. The round controlvalves are constructed from a galvanized steel laser welded tunnel in which an aluminum control valve with rotating blade is incorporated. It controls the airflow with a constant flow rate within an operating range between 40Pa and 500Pa. The regulator is resistant to varying pressures in the duct and is provided with an airtight maintenance-free bearing made of PTFE. The air flow rate is preset at the factory, but can be adjusted manually. The calibrated scale outside the regulator allows very accurate adjustment of the flow. The valves are available in duct diameters 80, 100, 125, 160, 200 and 250. The control valves are mounted between 2 channels where a rubber double lip seal provides an air-tight connection to air-tightness class D with the duct.
- Cairox Type VRS-LP-M

Order example

VRS-LP-M, 125, 24V

Explanation


VRS-LP-M= Type of constant air valve

125 = Duct diameter

24V = With actuator CM24-L (24V)

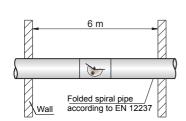
Other available products

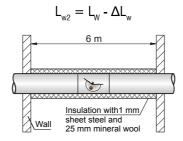
Stainless steel models available on request

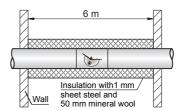
Dimensions									
VRS-LP-M	ØD [mm]	L1 [mm]	L2 [mm]	A1 [mm]	B1 [mm]				
80	79	140	40	158	105				
100	99	170	40	158	105				
125	124	170	40	158	105				
160	159	240	40	158	105				
200	199	240	40	158	105				
250	249	240	40	158	105				

Constant volume control dampers (CAV)

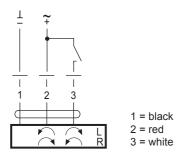
					Sound da	ta					
Ø	v [m/s]	Q [m³/h]	Lw [dB/Oct] - 100 Pa							Lw(A)	
"		***	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	
	1.4	25	29	33	32	32	32	33	28	27	37
80	2.9	52	39	39	37	36	35	36	31	30	41
	4.4	80	48	46	43	41	39	39	33	31	44
	1.4	40	32	34	34	33	33	34	29	27	39
100	2.9	82	46	43	40	37	35	35	28	27	41
	4.4	125	50	48	45	42	40	40	33	32	45
	1.5	65	35	36	36	35	35	36	30	29	41
125	3.2	142	48	46	42	39	37	37	30	29	43
	5	220	52	50	47	44	42	42	36	34	48
	1.4	100	37	38	38	37	36	36	30	28	41
160	3.1	225	49	47	43	40	38	37	31	29	43
	4.8	350	53	51	48	45	43	42	36	35	48
	1.4	160	40	41	40	38	38	37	31	29	43
200	2.9	330	50	47	44	40	38	37	30	29	43
	4.4	500	54	51	48	45	43	42	36	34	48
	1.4	240	42	42	41	39	38	38	31	28	43
250	2.9	520	51	48	45	41	39	38	31	29	44
230	4.5	800	55	53	45	46	39 44	43	37	35	49
	4.5	800	JJ	33	45	Lw [dB/Oct] -		45	37	20	47
Ø	v [m/s]	Q [m³/h]	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	Lw(A)
	1.4	25	38	40	40	40	41	42	36	35	46
00				43	44				44	44	
80	2.9	52	40			45	46	49			53
	4.4	80	51	51	50	48	48	49	44	44	54
	1.4	40	41	42	42	42	42	43	38	36	48
100	2.9	82	50	49	48	46	45	46	40	40	51
	4.4	125	53	53	51	50	50	50	45	45	55
	1.5	65	43	45	45	44	44	45	39	37	49
125	3.2	142	52	52	50	49	48	48	43	42	53
	5	220	61	59	56	53	51	51	44	43	56
	1.4	100	46	47	46	45	45	45	39	37	50
160	3.1	225	54	54	52	50	49	49	43	42	54
	4.8	350	62	60	57	54	52	51	45	43	57
	1.4	160	48	49	48	47	46	46	40	38	51
200	2.9	330	56	55	52	50	49	49	43	42	55
	4.4	500	59	58	56	54	54	54	48	47	59
	1.4	240	51	51	50	48	47	47	40	37	52
250	2.9	520	57	56	54	52	50	50	44	43	56
	4.5	800	61	60	58	56	55	55	49	48	60
			Lw [dB/Oct] - 500 Pa								
Ø	v [m/s]	Q [m³/h]	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	Lw(A)
	1.4	25	45	47	47	47	47	48	43	42	53
80	2.9	52 52	46	49	50	52	53	55	51	51	59
- 80	4.4	80	57	57	56	55	55	56	51	50	60
	1.4	40	47	49	49	49	49	50	44	43	54
100	2.9	82	50	52	53	54	55	57	52	52	61
100	4.4	125	59	52	58	57	56	57	52	51	62
	1.5	65	59	59	58	57	55	57	45	44	56
125	1.5 3.2		53	52				59	54	54	
125		142			56	57	57				63
	5	220	62	62	60	59	59	59	54	53	64
	1.4	100	53	54	53	52	52	52	45	44	57
160	3.1	225	56	58	58	59	59	60	55	54	65
	4.8	350	64	64	62	60	60	60	55	54	65
	1.4	160	55	56	55	54	53	53	46	44	58
200	2.9	330	58	60	60	60	60	61	55	54	65
	4.4	500	65	65	63	61	60	61	55	54	66
	1.4	240	57	58	56	55	54	53	46	44	59
250	2.9	520	61	62	62	62	61	62	56	55	67


Symbols and specifications

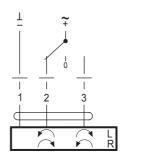

- Q [m³/h] = Air volume in m³/h
 Ø = Duct diameter in mm
 100Pa, 250Pa of 500Pa = Static pressure in Pa
 Lw[dB/Oct] = Generated sound power in the duct divided into dB per octave band


Radiated sound data											
Ø	ΔLw [dB/Oct] - non insulated duct										
W	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz			
80	36	33	32	23	17	12	11	11			
100	34	32	30	22	16	12	11	10			
125	29	29	31	24	21	19	15	11			
160	23	23	20	18	11	10	9	8			
200	22	19	16	16	15	11	9	8			
250	19	16	13	12	12	10	9	8			
Ø	ΔLw [dB/Oct] - insulated duct (25mm)										
V	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz			
80	39	35	39	35	32	33	34	29			
100	38	35	38	34	31	33	34	28			
125	35	33	37	36	32	33	36	27			
160	27	26	28	29	27	31	31	25			
200	23	18	23	26	29	29	29	24			
250	23	18	20	24	26	30	28	24			
Ø	ΔLw [dB/Oct] - insulated duct (50mm)										
	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz			
80	42	37	45	46	47	54	56	47			
100	41	38	46	45	47	54	57	47			
125	35	36	42	48	51	60	58	45			
160	29	28	35	40	44	51	54	44			
200	26	22	29	37	42	51	53	43			
250	25	20	26	35	41	50	52	42			

Constant volume control dampers (CAV)



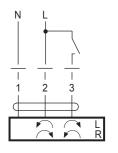
 $L_{W2} = L_W - \Delta L_W$


 L_{W2} = Case radiated noise in dB L_{W} = Sound power given for the frequencies f[Hz] from 63 up to 8000 Hz ΔL_{W} = Correction values for case radiated noise in dB

Wiring diagram

AC/DC 24 V, open-close

AC/DC 24 V, 3-point

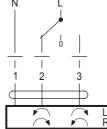


1 = black

2 = red

3 = white

AC 230 V, open-close



1 = blue

2 = brown

3 = white

AC 230 V, 3-point

1 = blue

2 = brown 3 = white